LukemanLab - St. John's University Chemistry - Science





LukemanLab Science: Introduction

We are interested in nanometer-scale control of chemical functionality : this enables
the synthesis of new materials,
the discovery of new chemical and biochemical reactions,
the ability to direct the organization of nanoelectronic components

DNA-based nanotechnology controls chemical functionality at the nanometer scale using designed,
synthetic, self-assembled systems that are unique in their versatility and programmability.

  • A great introduction to DNA-based nanotechnology - from 2004 - for laypepople can be found here

  • A more technical review of the state of the art - as it stood in early 2013 - can be found here

    LukemanLab Science: Our Plans

    Our projects involve the use of covalent chemistry to control DNA-based nanotechnology - and the construction of mesoscale sensing devices. We will

    a) Make DNA nanoconstructions that are more robust with respect to temperature, pH and metal ion concentration -
    allowing them to be used in a wider range of environments
    b) Enable orthogonal chemical and physical stimuli to activate and deactivate DNA sequence-controlled switches -
    enabling greater control of the design and operation of these systems
    c) Develop systems that allow the control of multiple DNA switches without the addition of external reagents -
    enabling the use of these switches in multiplexed self-contained sensing environments
    d) Develop mesoscale DNA constructions that act as sensors

    See the News Section for our latest results.